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Abstract
Artificial Intelligence systems are frequently designed to exhibit
warmth and emotional intelligence when in "conversation" with
users. While qualitative studies suggest that these stylistic choices
promote deeper user engagement, it remains unclear if algorith-
mic empathy is the active driver of this phenomenon. Our study
presents a quantitative framework to estimate the causal effect of
LLMs empathy on user emotional attachment in real-world settings.
Leveraging the WildChat-1M dataset, we translate social behaviors
into measurable scores using an LLM-as-a-Judge methodology. To
isolate the true causal impact from confounding factors, we employ
advanced causal inference techniques, including Semantic Match-
ing and Double Robust Learning. Our analysis reveals a statistically
significant Average Treatment Effect (ATE) of 0.7264 and 0.7353 for
analyzed conservations across across Greedy & Hungarian match-
ing methods, with an approximate median DR-Learner ATE fo 0.77
and Median CATE of 0.77 as well. This finding provides empirical
evidence that high-empathy AI responses directly increase user
attachment, regardless of confounding factors such as user traits or
conversation context. While the central tendency is stable, Hetero-
geneous Treatment Effect (HTE) analysis uncovers substantial vari-
ability, indicating that while most users respond positively, a subset
exhibits neutral or even adverse reactions to algorithmic empathy.
To facilitate reproducibility and further research, we release our full
codebase at github.com/dangolofrancesco/llm-empathy-causal-study.

1 Introduction
The technological capacity to generate emotionally charged re-
sponses now blurs the boundary between human and machine
communication. While emerging evidence suggests AI-mediated
relationships have a measurable affective and psychological impact,
a fundamental causal question remains unresolved: Does empathic
language produced by an LLM actually cause users to respond with
stronger emotional attachment?
Much of the existing work on this topic relies on qualitative obser-
vations or correlational analyses, which can’t rule out the influence
of user-level factors. For instance, let us say a user who begins a
conversation with an emotionally vulnerable prompt may simulta-
neously elicit a highly empathetic response and, in turn, produce
an emotionally expressive reply. As Keith et al. [1] emphasized,
linguistic features in text data act as confounders, making causal
inference challenging in naturalistic conversation. To address this
challenge, we employed a causal inference framework designed for
high-dimensional text and determine the causal relationship

2 Related Work
Our work builds upon research from three intersecting areas: (1)
theories of human–AI social interaction and artificial intimacy, (2)

empirical studies on para-social relationships with conversational
agents, and (3) methodological advances in causal inference with
text and representation learning.
Foundational work by Reeves and Nass [2] established that hu-
mans naturally apply social norms such as politeness, empathy
expectations, and turn-taking conventions to computers, a prin-
ciple codified as the CASA paradigm. It seems that as LLMs are
always more capable of replicating the humanoid affective language
that we see on a daily basis, social attributions intensify. Vincent [3]
describes this emerging dynamic as artificial intimacy, a situation
where LLMs engage users in such a way that mimics relational and
emotional closeness. That framing provided a theoretical founda-
tion for investigating empathy as not just a stylistic decoration, but
a behavior with potential causal influence on user affect.
We read some studies exploring emotional bonds formed in this
theoretical framework. Skjuve et al. [4] documented how Replika
chatbot users reported companion-esque relationships and experi-
enced distress due to behavioral changes in the model. Similarly, Ho
et al. [5] extended this work with specific focus on mental health,
demonstrating that perceived empathy of conversational AI seemed
to predict greater parasocial attachment and reduced loneliness. To
us, these studies highlighted that users’ emotional engagement is
sensitive to perceived signals exhibited by AI systems. However, we
felt as a team that they didn’t identify whether empathic linguistic
behavior is the cause of emotional attachment, which motivates
our causal question.
The task of estimating these causal links in high-dimensional lan-
guage data posed a few challenges. We note how Keith et al. [1]
reviewed how textual features encode latent emotions, intentions,
and personal traits, which often act as confounders when estimating
causal relationships. This would need robust strategies to control a
text’s semantic context. Roberts et al. [6] proposed that text match-
ing is a method to balance treated and control groups on linguistic
similarity, showing that embedding-based matching can substan-
tially improve causal validity. This aligns with our use of semantic
similarity measures to control for the user’s initial prompt.
Furthermore, representation learning methods offer powerful tools
for causal inference in settings with unstructured data. Johansson
et al. [7] introduce a counterfactual representation framework in
which neural embeddings are trained to minimize imbalance across
treatment groups, enabling more accurate estimation of treatment
effects. Von Kügelgen et al. [8] and Rojas-Carulla et al. [9] show that
invariant and disentangled representations can help isolate causal
factors from spurious correlations. We leverage these insights by
employing Sentence-BERT [10] and MPNet [11] embeddings to ap-
proximate semantic similarity and reduce the influence of prompt-
based confounding. Across these domains, prior work highlights
that causal evaluation of linguistic interactions requires rigorous

https://github.com/dangolofrancesco/llm-empathy-causal-study
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control of textual confounders; our study synthesizes these threads
by applying modern causal methods to large-scale conversational
data.

3 Formal Problem Description
We investigate the conversational dynamics between humans and
Large Language Models (LLMs), specifically focusing on whether
the linguistic style of an LLM directly influences user emotional
engagement. Formally, we define our unit of analysis 𝑖 as a conver-
sational turn-pair consisting of a user prompt, the subsequent LLM
response, and the user’s follow-up reply.
Our objective is to determine if an empathetic LLM response (𝑇 )
causally drives user emotional attachment (𝑌 ). Normally, observing
a correlation between high model empathy and high user attach-
ment is insufficient to establish causality. This is due to confound-
ing variables (𝑋 ) simultaneously influencing the probability of the
model being empathetic and the user’s likelihood of expressing at-
tachment. For instance, a user expressing vulnerability (e.g., “I feel
lonely” ) is highly likely to elicit an empathetic response from the
LLM (Treatment𝑇 = 1) and is also inherently more likely to display
attachment in their subsequent reply (Outcome 𝑌 = 1), regardless
of the model’s actual output. Here, a naive comparison of means
𝐸 [𝑌 |𝑇 = 1] − 𝐸 [𝑌 |𝑇 = 0] yields a biased estimate, conflating the
true causal effect of the model’s empathy with a user’s pre-existing
emotional state (selection bias).
To find the true causal effect, we first set the basis of the problem,
introducing two potential outcomes, for each conversational turn 𝑖:

• 𝑌𝑖 (1): The attachment score user 𝑖 would exhibit if treated
with a high-empathy response.
• 𝑌𝑖 (0): The attachment score user 𝑖 would exhibit if treated

with a low-empathy response.
The "Fundamental Problem of Causal Inference" is that for any
single interaction 𝑖 , we observe only the factual outcome corre-
sponding to the received treatment, 𝑌𝑖 = 𝑇𝑖𝑌𝑖 (1) + (1 − 𝑇𝑖 )𝑌𝑖 (0),
leaving the counterfactual unobserved. Consequently, our task is to
estimate the causal effect by adjusting for the confounding vector
𝑋 , ensuring that we’re comparing interactions that are similar in
all respects barring the empathy in model’s response.

3.1 Causal Graph and Confounding Variables
To identify the causal effect, we must explicitly articulate the causal
structure governing the data generation process. We formalize our
assumptions using a Directed Acyclic Graph (DAG), G = (𝑉 , 𝐸),
presented in Figure 1.

In this graph, arrows represent causal influences. To recover an
unbiased estimate of the effect of LLM Empathy (𝑇 ) on User At-
tachment (𝑌 ), we must identify and block all "backdoor paths": non-
causal associations created by confounding variables (𝑋 ) that in-
fluence both the treatment and the outcome simultaneously. Based
on the WildChat-1M dataset, we identify four distinct vectors of
confounding variables:

• 𝑋1: User Initial Prompt (Text Confounder). This is the
most critical and complex confounder in our analysis. As
highlighted by Keith et al. (2020) [1], text data presents a
unique challenge for causal inference because high-dimensional
linguistic features often act as latent confounders. A user’s

initial prompt establishes the emotional tone of the inter-
action. For instance, a user explicitly stating "I feel lonely"
is highly likely to elicit an empathetic response (𝑇 = 1)
simply due to the model’s instruction following, while si-
multaneously predisposing the user to a highly attached
reply (𝑌 = 1) regardless of the model’s output. Failing to
control for the semantic content of 𝑋1 would result in esti-
mating the correlation between user vulnerability and user
attachment, rather than the causal effect of the model’s
response.

• 𝑋2: User Latent Traits. Individual users are character-
ized by latent personality traits (e.g., chronic loneliness,
tendency to anthropomorphize) that affect both their like-
lihood of seeking empathy and their baseline level of at-
tachment. While these traits are unobserved, we use the
unique User ID, that occur in the dataset, to generate user-
specific embeddings, allowing us to capture and control
for stable, user-specific behavioral patterns across multiple
conversations.

• 𝑋3: Conversation Context. The environmental context of
a conversation significantly alters interaction dynamics. We
explicitly control for Time of Day and Conversation Turn
Depth. A conversation occurring late at night after many
turns is likely to be more intimate and emotionally charged,
increasing the probability of both high empathy from the
model and high attachment from the user, compared to a
transactional interaction occurring during the workday.

• 𝑋4: Model Architecture. Our dataset includes interac-
tions with various LLMs (e.g., GPT-4, Llama-2). More ca-
pable models ("smarter" models) are inherently better at
generating empathic responses (𝑇 = 1) and are also better
at maintaining engaging conversations that promote user
attachment (𝑌 = 1). Without controlling for the specific
Model ID, our results could merely reflect that superior
models generate better user engagement, rather than iso-
lating the specific effect of empathy itself.

By conditioning on this set of confounders 𝑋 , we aim to satisfy
the unconfoundedness assumption, 𝑌 ⊥ 𝑇 |𝑋 , allowing us to
interpret the adjusted association between 𝑇 and 𝑌 as causal.

3.2 Treatment and Outcome Variable Definition
To estimate the causal effect of empathy, we first operationalize
the treatment variable using a quantitative measure of the model’s
linguistic behavior. Let 𝑆𝑖 ∈ {1, . . . , 7} denote the Empathy Score
assigned to the model response in conversation 𝑖 . As detailed in
Section 5.1, this score is generated by an LLM-as-a-Judge (Mistral-
small)[13] using a rigorous rubric, where a score of 1 represents
a "Cold/Robotic" response and a score of 7 represents a "Deeply
Empathetic/Human-like" response. We convert this ordinal metric
into a binary treatment variable, 𝑇𝑖 , to facilitate causal estimation
between distinct groups. We define the treatment assignment via
the following thresholding function:

𝑇𝑖 =


1 if 𝑆𝑖 ≥ 5 (High Empathy / Treated)
0 if 𝑆𝑖 ≤ 3 (Low Empathy / Control)
Undefined if 𝑆𝑖 = 4 (Excluded)
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Figure 1: A Directed Acyclic Graph (DAG) of the hypothesized causal relationships. The model shows the primary causal path
from Treatment (T: LLM Empathy) to Outcome (Y: User Attachment), the potential mediators (M), and the set of confounders
(X) that must be controlled.

We used a 7-point scale to capture the nuances of conversational
tone, but for the purpose of causal inference, it is necessary to
establish a clear distinction between the presence and absence of
the treatment.

• Treatment Group (𝑇𝑖 = 1): Comprises responses with
𝑆𝑖 ≥ 5, representing instances where the LLM explicitly
exhibits empathetic linguistic markers.

• Control Group (𝑇𝑖 = 0): Comprises responses with 𝑆𝑖 ≤
3, representing the baseline population where the "empa-
thy" intervention is absent (i.e., neutral or transactional
responses).

• Exclusion of Intermediate Cases:We purposely exclude
interactions with an intermediate score of 𝑆𝑖 = 4. This
"buffer zone" ensures a robust separation between the treated
and control groups, minimizing potential labeling noise and
ensuring that we are comparing clearly distinct conversa-
tional styles rather than ambiguous borderline cases.

To quantify the user’s immediate emotional response, we define
the outcome variable 𝑌𝑖 as the Attachment Score of the user’s reply
following the model’s response. As in our treatment variable, we
employ an LLM-as-a-Judge approach to evaluate the user’s text.
The judge assigns again a score 𝑌𝑖 ∈ {1, . . . , 7} based on linguis-
tic cues indicative of emotional bonding, such as self-disclosure,
vulnerability, and affective language. On this scale, a score of 1
indicates a purely transactional or detached reply, while a score of 7
indicates an interaction that is both deeply relational and attached.
This continuous metric enables us to gauge the magnitude of the
shift in user behavior driven by a model’s empathetic intervention.

3.3 Target Estimands
To rigorously quantify the causal impact of chatbot empathy on
user attachment, we define three primary estimands: the Average
Treatment Effect (ATE), the Conditional Average Treatment Effect
(CATE), and the Heterogeneous Treatment Effect (HTE).

Average Treatment Effect (ATE). In order to compute how much a
chatbot’s empathic behavior changes the user’s reaction, control-
ling for who the user is or the specific content of their request, we
aim to estimate the Average Treatment Effect (ATE). If we simply
compared the average attachment scores of all high-empathy con-
versations against low-empathy ones, our results would be heavily
biased. For this reason, we compute the ATE to isolate the general
tendency of an empathic model to cause attachment across the en-
tire population, controlling for confounders to ensure this average
reflects the model’s influence rather than pre-existing user traits.
Formally, the ATE is defined as the expected difference between
the potential outcomes over the entire population:

𝜏ATE = E[𝑌 (1) − 𝑌 (0)] (1)

In our observational study, we estimate this by averaging over the
distribution of confounders 𝑋 (as defined in Section 3.1):

𝜏ATE = E𝑋

[
E[𝑌 | 𝑇 = 1, 𝑋 ] − E[𝑌 | 𝑇 = 0, 𝑋 ]

]
(2)

This metric provides a single summary statistic indicating whether,
on average, empathic AI responses successfully drive higher user
attachment.

Conditional Average Treatment Effect (CATE). While the ATE pro-
vides a global average, it may obscure important variations in how
different subgroups respond to empathy. To understand these nu-
ances, we define the Conditional Average Treatment Effect
(CATE). CATE measures the average treatment effect conditioned
on a specific set of covariates 𝑋 = 𝑥 .

𝜏CATE (𝑥) = E[𝑌 (1) − 𝑌 (0) | 𝑋 = 𝑥] (3)

For this project, estimating CATE is crucial for answering granular
questions, such as:

• Does empathy work better for lonely users? (Conditioning
on 𝑋2: User Latent Traits)

• Is empathy more effective late at night? (Conditioning on
𝑋3: Context)
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• Does the prompt content matter? (Conditioning on 𝑋1:
Prompt Embeddings)

By estimating 𝜏CATE (𝑥), we can identify for whom or when the
empathic intervention is most effective, allowing us to move beyond
a "one-size-fits-all" conclusion.

Heterogeneous Treatment Effect (HTE). The variation in causal ef-
fects across different individuals or subgroups is referred to as the
Heterogeneous Treatment Effect (HTE).While CATE is the function
of the effect for a specific subgroup, HTE is the broader concept
describing the presence and structure of this variance across the
population.
Formally, HTE analysis investigates the distribution of the individ-
ual treatment effect 𝜏𝑖 = 𝑌𝑖 (1) − 𝑌𝑖 (0). Since 𝜏𝑖 is unobservable for
any single unit, we analyze HTE by examining how 𝜏CATE (𝑥) varies
with 𝑥 .
The relationship between these metrics is that the ATE is simply
the expectation of the CATE over the population density of 𝑋 :

𝜏ATE = E𝑋 [𝜏CATE (𝑋 )] (4)

For our study, analyzing HTE allows us to detect effect modifica-
tion. For example, we might find that while the ATE is positive, the
HTE analysis reveals a subset of transactional prompts (e.g., coding
questions) where the effect is near zero or even negative (where
empathy might be perceived as annoying or intrusive). Understand-
ing this heterogeneity is vital for the responsible development of
AI, ensuring that models deploy empathy only in contexts where it
causally benefits the user experience.

4 Dataset Description and Preprocessing
Pipeline

To empirically estimate the causal effect of empathy on user attach-
ment, we require a dataset that captures the authentic, messy, and
diverse nature of human-AI interaction. In this section, we describe
theWildChat-1M dataset and the rigorous preprocessing pipeline
we implemented to distill millions of raw logs into a clean set of
socio-emotional dialogue pairs.

4.1 Dataset Description: WildChat-1M
We use the WildChat-1M dataset, a large-scale corpus of real-world
user-chatbot interactions retrieved fromHugging Face. Unlike other
datasets that rely on synthetic or expert-curated prompts (e.g., Al-
paca or Dolly), WildChat comprises over 1 million conversations
and 2.5 million interaction turns collected from actual user traffic
on free LLMs interfaces. [14].
This dataset is uniquely suited for our causal analysis for three key
reasons: (i) It captures "wild" usage patterns, ranging from creative
writing and coding to emotional venting and roleplay. This realism
is essential for studying genuine attachment, which rarely occurs in
sterile, curated datasets. (ii) The dataset provides granular metadata
essential for our study, including hashed IP addresses (allowing
us to track distinct users over time to model 𝑋2) and timestamped
transcripts (for 𝑋3). (iii) With a long tail of extended interactions,
3.7% of conversations exceed 10 turns, WildChat allows us to ob-
serve the sequence of emotional exchange (𝑋1 → 𝑇 → 𝑌 ) rather
than just isolated queries.
The dataset reveals that while transactional tasks like "assisting/creative

writing" (61.9%) and "coding" (6.7%) dominate, there is a substan-
tial volume of open-ended dialogue. Furthermore, safety analysis
shows that 10.46% of user turns are flagged as potentially toxic,
necessitating careful filtering to ensure we are studying healthy
emotional attachment rather than abusive dynamics.

4.2 Preprocessing Pipeline
The raw dataset contains substantial noise, such as multilingual text,
code generation, and toxic content that is irrelevant to our research
question. To isolate socio-emotional turn-pairs, we implemented a
5-step preprocessing pipeline:

(1) Turn-Pair Extraction.We first flattened the nested con-
versation data into our primary unit of analysis: the Turn-
Pair Triplet.

Triplet𝑖 = (User Prompt𝑖 , LLM Response𝑖 ,User Reply𝑖 )

This structure directly maps to our causal variables: the
Prompt acts as the confounder (𝑋1), the Response as the
Treatment (𝑇 ), and the Reply as the Outcome (𝑌 ).

(2) Language filtering. To ensure linguistic consistency for
our semantic embeddings and the LLM-as-a-Judge scoring
process, we retained only conversations explicitly tagged
as English. While WildChat covers 68 languages , English
accounts for ∼ 53% of turns, providing wide data for analy-
sis.

(3) Code and Instructional filtering. A major challenge was
separating "transactional" tasks (e.g., debugging Python)
from "relational" dialogue. We developed a rule-based filter
to exclude any turn-pair containing code blocks, program-
ming keywords (e.g., def, import, return), and instructional
phrasing (e.g, "solve this", "write an essay"). This step alone
removed approximately 70% of the data, successfully fil-
tering the bulk of task-focused content. However, we ac-
knowledge that this rule-based method is not perfect. As
will be discussed in Section 5.1, the high prevalence of low
attachment scores (𝑌 = 1) in our final samples suggests
that many subtle instructional prompts likely bypassed this
filter. While an LLM-based classifier would offer higher pre-
cision, resource constraints (reliance on free-tier models)
necessitated this heuristic approach.

(4) Quality and safety filteringWe removed all turn-pairs
where either the user or model text was flagged as toxic:
true or redacted: true, to exclude hate speech, sexual content
and harassment.

(5) Length filtering. To capture genuine ongoing interactions
rather than "one-shot" Q&A, we removed all conversations
with fewer than three turns. This ensures that the user’s "re-
ply" (𝑌 ) occurs within an established conversational context
where attachment has had time to manifest.

This pipeline reduced the initial corpus to a high-quality subset of
144,439 socio-emotional turn-pairs, which serve as the population
for our subsequent sampling and causal analysis.
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5 Proposed Approach
In this section, we delineate the methodological framework estab-
lished to investigate the causal relationship between LLM empathy
and user attachment.

5.1 LLM-as-a-Judge implementation
To operationalize the Treatment (𝑇𝑖 ) and Outcome (𝑌𝑖 ) variables
defined in Section 3.2, we required a scalable method to evaluate
the subtle emotional nuances of thousands of conversational turns.
While human annotation is the gold standard, it is prohibitively
expensive for large-scale datasets. Therefore, we adopted an LLM-
as-a-Judge approach, leveraging a Large Language Model to act as
an objective evaluator. Due to the significant computational time
and rate limits associated with scoring the full corpus of 144,439
turn-pairs, we proceeded with a stratified random sample of ap-
proximately 9,000 turn-pairs for this analysis.

Scoring architecture and prompting strategy. We used mistral-small
[13] via the Mistral API as our judge. To ensure consistent and
high-quality evaluations, we implemented a few-shot prompting
strategy. Given that smaller models like mistral-small may struggle
with abstract instructions compared to larger frontier models (e.g.,
GPT-4), simply providing the 1-7 numeric scale was insufficient.
Our prompt included:

(1) Detailed Rubric: A precise definition for every score level
(e.g., 1 = Cold/Robotic, 7 = Deeply Human-like).

(2) Few-Shot Examples: For each score on the scale, we pro-
vided a concrete example of a sentence that fits that specific
rating.

This "anchor" text provided the model with necessary context,
grounding its reasoning and reducing hallucination or scoring drift.
This was critical for ensuring that the judge could reliably distin-
guish between a "polite but transactional" response (𝑆 = 3) and a
genuinely "empathetic" one (𝑆 = 5).

Distribution of scores. The resulting distributions of the Empathy
and Attachment scores for our sample are visualized in Figure 2.

• Empathy Scores (Treatment): The model responses ex-
hibit a relatively balanced but centrally concentrated distri-
bution, with a mean score of 3.43. The majority of model
outputs fall into the neutral range (3-4), suggesting that
while modern LLMs are polite, they do not default to high
empathy (𝑆 ≥ 5) without specific prompting.

• Attachment Scores (Outcome): In contrast, the user at-
tachment scores are heavily right-skewed, with a mean
score of 1.93. As shown in the histogram, over 50% of user
replies received the lowest possible score of 1.

This prevalence of low attachment scores validates our earlier ob-
servation in Section 4.2: despite our filtering efforts, a significant
portion of real-world user interactions remains functional and trans-
actional (e.g., clarification questions, follow-up tasks) rather than
emotional. This skew underscores the difficulty of the causal task,
high attachment is a rare event that requires precise isolation from
the noise of everyday utility requests.

Figure 2: Empathy (T) and Attachment (Y) score distributions
from our 10k-pair sample.

5.2 Controlling for the first confounder: 𝑋1
Once we identified the treatment and control groups, obtaining
an unbiased estimate of the causal effect required adjusting for
confounders [15]. Our analysis follows the directed acyclic graph
introduced in Section 3, which specifies the structural assumptions
of our setting. The first confounder we control for is 𝑋1: the user’s
initial prompt. For each conversation, our dataset includes the first
message provided by the user, which the LLM uses to generate its
response. Our causal assumption is that the content and tone of the
initial prompt influence both the treatment (the empathy level of the
model’s response) and the outcome (the user’s subsequent attach-
ment). Different prompt types provoke different LLM behaviors; for
example, a more empathic initial user message is likely to produce
a more empathic LLM reply, and may also predispose the user to
express greater attachment in their final turn. To estimate the causal
effect while accounting for this confounder, we compared outcomes
among samples with similar covariates but received different treat-
ment levels and then averaged these conditional differences to ob-
tain the ATE [16]. But comparing text instances directly is difficult,
as natural language varies widely in form and content. To group
similar initial prompts, we computed sentence embeddings using
the all-mpnet-base-v2 [17] model from SentenceTransformers. This
model is computationally efficient while providing high-quality
semantic representations, and it is specifically optimized for tasks
such as semantic similarity and cosine-based comparison.

5.3 ATE computation via matching techniques
Once the prompt embeddings were available, we compared prompts
in terms of semantic similarity using cosine similarity between em-
beddings. We matched each treatment sample to a control sample
based on the cosine similarity of their prompts. The matching was
done with two different methods, to evaluate the ATE under dif-
ferent average matching technique and therefore quality. The first
method implemented is the greedy matching algorithm, defined
in Algorithm 1. While this approach is fast and simple, it is order-
dependent and globally suboptimal. So we decided to also compute
the ATE matching with the Hungarian matching technique, de-
scribed in Algorithm 2. This method guarantees a globally optimal
one-to-one assignment that maximizes total similarity. We note
that the Hungarian algorithm assumes a square cost matrix, so this
procedure required | 𝑇 |=| 𝐶 |: the smaller set (the treatment group)
was padded with dummy rows.
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Algorithm 1 Greedy Matching by Cosine Similarity
1: Compute similarity matrix 𝑆 between all treatment and control

units.
2: Initialize all controls as unused.
3: for each treatment unit 𝑡 do
4: Let C be the list of controls sorted by 𝑆 [𝑡, 𝑐] in descending

order.
5: for each control 𝑐 in C do
6: if 𝑐 is unused then
7: Match 𝑡 with 𝑐 .
8: Mark 𝑐 as used.
9: break
10: end if
11: end for
12: end for

Algorithm 2 Hungarian Matching for Cosine-Similarity
1: Input: Treatment embeddings 𝑇 , Control embeddings 𝐶
2: Compute similarity matrix 𝑆 where 𝑆𝑖 𝑗 = cosine_sim(𝑇𝑖 ,𝐶 𝑗 )
3: Define cost matrix 𝐾 = −𝑆 ⊲ Convert maximization to

minimization

4: // Row reduction
5: for each row 𝑖 of 𝐾 do
6: 𝑟𝑖 ← min𝑗 𝐾𝑖 𝑗
7: 𝐾𝑖 𝑗 ← 𝐾𝑖 𝑗 − 𝑟𝑖 for all 𝑗
8: end for

9: // Column reduction
10: for each column 𝑗 of 𝐾 do
11: 𝑐 𝑗 ← min𝑖 𝐾𝑖 𝑗
12: 𝐾𝑖 𝑗 ← 𝐾𝑖 𝑗 − 𝑐 𝑗 for all 𝑖
13: end for

14: Cover all zeros in 𝐾 using the minimum number of horizon-
tal/vertical lines

15: while number of covering lines < 𝑛 do
16: 𝑢 ← smallest uncovered value in 𝐾
17: Subtract 𝑢 from all uncovered entries
18: Add 𝑢 to all entries covered twice
19: Recompute minimal line covering of zeros
20: end while

21: Extract one zero in each row and column such that no two
share a row/column

22: Let (𝑖, 𝑗) denote these selected zero positions
23: return Optimal matching {(𝑇𝑖 ,𝐶 𝑗 , 𝑆𝑖 𝑗 )}

5.4 CATE, HTE, ATE computation via
Double-Robust Learner

We wanted to verify whether the obtained results were consistent
across different ATE computation techniques. So we applied the
Double Robust (DR) learner from EconML [18]. The DR Learner
combines ouctome modeling and treatment-assignment modeling

in a way that produces consistent treatment effect estimates even
if one of the two components is misspecified, hence the double
robust name. In this initial approach the sample features 𝑋 are the
embeddings of the initial usre prompt, a numerical representation
of the confounder 𝑋1.

This learner operates in three main stages.
• First it trains two machine learning models: an outcome

regression model which predicts the outcome under treat-
ment and control.

𝑚̂𝑡 (𝑋 ) = 𝐸 [𝑌 = 𝑡, 𝑋 ]
and a propensity model

𝑒 (𝑋 ) = 𝑃 (𝑇 = 1 | 𝑋 )
which estimates the probability of receiving treatment given
the covariates 𝑋 .
We decided to use random forest for flexibility and non-
linearity.

• For each unit, the learner constructs a double-robust pseudo-
outcome, which corrects for inaccuracies in either the out-
come or propensity model:

𝑌̃ =

(
𝑇 − 𝑒 (𝑋 )

𝑒 (𝑋 ) (1 − 𝑒 (𝑋 ))

)
(𝑌 −𝑚𝑇 (𝑋 )) + (𝑚1 (𝑋 ) −𝑚0 (𝑋 ))

• Finally, it fits a regression model to estimate 𝜏 (𝑋 ), a vector
representing the HTE. Each predicted 𝜏 (𝑋𝑖 ) represents the
estimated CATE for each unit 𝑖:

𝜏 (𝑋𝑖 ) = E[𝐶𝐴𝑇𝐸] = �𝐶𝐴𝑇𝐸 = E[𝑌𝑖 (1) − 𝑌𝑖 (0) | 𝑋𝑖 ]
Averaging these estimates over the whole sample set gives the
estimated ATE:

𝐴𝑇𝐸 =
1
𝑛

𝑛∑︁
𝑖=1

𝜏 (𝑋𝑖 )

The matching-based estimators relied heavily on local similarity,
and we were only using a subset of the original dataset. The DR
Learner, instead, is less sensitive to imperfect matches and is con-
sistent under weaker assumptions. It also computes the CATE esti-
mates, from which we got useful insight and could investigate the
heretogeneity of the treatment effect.

5.5 Controlling for other confounders
To further reduce the bias in our causal estimates, we ensured
that the DR Learner accounted for the rest of the confounders
we identified. We included in the feature space 𝑋 all confounders
described in Section 3.

• 𝑋2: User identity can influence many aspects of the prompts
given to the LLM, which in turn may affect both treat-
ment assignment and measured outcomes. We generated
16-dimensional hashed embeddings of the users’ unique
IP, using a feature hasher, in order to provide a compact
representation of user-specific traits, while preventing over-
fitting.

• 𝑋3: Several factors may be influenced by the time of the day
in which users interact with LLMs. Prior work shows that
people’s emotions vary across the day, with evenings and
nights linked to stronger emotional reactions and weaker
cognitive control [19][20]. Users interacting at these times
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may behave differently, and model performance can also
shift with system load. To capture these effects, the hour
of each interaction was binned into four interpretable time
periods all spanning 6 hours (Morning, Afternoon, evening,
Night). These bins were then one-hot encoded.

• 𝑋4: Different LLMs produce different outputs given the
same prompt, so they may produce different empathy or at-
tachment scores independently of the treatment. To control
for this, we one-hot encoded the model identity for each
response.

It must also be noted that we reduced the 768-dimensional em-
bedding vectors to 400 principal components because this retained
≈ 96% of the total variance, while cutting in half dimensionality and
improving the stability of the DR Learner. Using a smaller number
of components would have led to noticeably lower explained vari-
ance, meaning significant semantic information was lost, thus the
choice of a high number (400). Conversely, keeping all 768 dimen-
sions made the models in the DR Learner more prone to overfitting
and increased computational cost without improving performance.

6 Experimental setup and results
Because our access to the Mistral model used for scoring Empathy
and Attachment was limited, we were unable to process the entire
dataset. We ran our experiments on a restricted subset of 10.000
sample conversations. We assume that if we had access to a fully
scored dataset our causal estimates would have been more accurate.
For example, the prompt matching described in Subsection 5.3
would have been more effective, as more conversations would have
allowed for higher match quality and thus more accurate ATE
estimation.

6.1 Prompt matching and ATE computation
Out of the 10.000 analyzed conversations, 899 were assigned to the
treatment group and 5,075 to the control group. The remaining
samples were excluded because the empathy level of the LLM-
generated response could not be clearly classified into either group.
For this reason, we obtained 899 pairs on which we could compute
the average treatment effect: each treatment sample was matched to
a single best control sample. We applied both matching techniques
to our groups, and they ended up giving very similar results, despite
working quite differently under the hood. Table 1 displays the
average matching quality (in terms of cosine similarity) across both
methods, and the resulting ATE score estimate. Figure 3 shows the

Method Mean Matching Quality ATE 95% CI
Greedy 0.4571 0.7264 [0.6140, 0.8309]
Hungarian 0.4690 0.7353 [0.6251, 0.8465]

Table 1: Comparison of matching methods.

distribution of the differences in the Hungarian matching case. We
decided to only show the graph for one of the two methods as the
score distributions are very similar.

Figure 4: Distribution of the estimated CATEs.

Figure 3: Distribution of the paired outcome differences in
the Hungarian matching approach.

6.2 Double Robust Learner: initial results
The DR learner had the potential to either validate or challenge
our previous results, so we applied it to assess whether the ATE
estimate was stable across alternative estimation methods. The first
DR learner was run under a limited subset of covariates: the initial
prompt embeddings, to control the confounding of 𝑋1. However,
the results we obtained on this were rather satisfactory, as the
numerical mean of the 𝜏 (𝑋 ) confirmed our previous estimation.
Figure 4 shows the distribution of the estimated CATEs of all sam-
ples. Table 2 summarizes key properties of the distribution obtained
with this approach. The minimum and maximum estimated CATEs,
together with the relatively high variance compared to the effect
size, suggest substantial heterogeneity in the treatment effect, as
the impact of the treatment varies widely across users.

Metric Value
Causal Effect Estimates
ATE 0.7335
Std of CATEs 1.1297
Min / Max CATE -3.64 / 6.67
Median CATE 0.7126
Quantiles (25%, 50%, 75%) -0.0099 / 0.7126 / 1.4553

Table 2: DR-Learner causal effect estimates.
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6.3 Controlling for other confounders: DR
Learner results

After controlling for the other confounders and reducing the dimen-
sion of the prompt embeddings as described in Subsection 5.5, we
ran a final instance of the DR-Learner believing its estimates would
be more accurate. The results are shown in Table 3 It estimated an
ATE of 0.77, which is consistent with the previously obtained esti-
mates. The median CATE (0.77) is almost identical to the ATE, and
this result further supports that the central tendency of the effect
is stable. However, even this instance of the DR Learner reveals
substantial treatment-effect heterogeneity, but not as much as the
initial version: The standard deviation of CATEs is not as large as
before (0.90 < 1.13), and while the effect still ranges from strongly
negative to highly positive, it is not as tragic as in Subsection 6.2. As
suggested before, the treatment does not benefit all users equally;
some appear to respond very strongly, while others exhibit neutral
or even adverse effects.

Metric Value
Causal Effect Estimates
ATE 0.7719
Std of CATEs 0.9047
Min / Max CATE -2.94 / 5.24
Median CATE 0.7718

Table 3: DR-Learner causal effect estimates, controlling for
all confounders.

7 Discussion and ideas for next step
7.1 Results Discussion
The most important finding of our project is that both of our match-
ing methods an both DR Learner variants converge on an estimated
ATE of around 0.73-0.77. This suggests there is a real causal effect:
Empathetic LLM responses do increase user attachment by a score
of about 0.75 points on average. This increase is analyzed with
respect to our scoring metric. The effect is stable despite the differ-
ence of the models and confounder controls. This robustness across
various techniques increases our confidence that the phenomenon
we were trying to prove is real rather than just a supposition. Look-
ing at the HTE estimates obtained from the DR Learners, there is a
wide variation in CATEs, including strongly negative values. This
suggests that empathy does not uniformly increase attachment, and
some users may react negatively to empathic LLM responses. The
median does suggest that most users benefit, but also the tails of
the distributions are meaningful: an interesting future direction
would be analyzing what personal traits of the users provoke this
difference in outcome. Our dataset, however, did not provde us
with this information. While the average matching quality was
moderate (0.4571 and 0.4690), both cosine similarity matching ap-
proaches brought similar distributions of paired differences. Their
ATE estimates were comparable to the estimates obtained to the
other method. Controlling for additional confounders improved the
results but did not radically change them: the ATE was almost un-
changed, but the CATE distribution had lower standard deviation,

and less extreme values on the tails. This result suggests that the
additional confounders introduced in the final DR-Learner model
(𝑋2, 𝑋3, 𝑋4) do not explain away the estimated treatment effect. In
other words, the positive impact of empathetic responses is not
an artifact of omitted-variable bias. This further strengthens the
internal validity of our findings.

7.2 Ideas for Next Step
As can be observed in Figure 4, the predicted CATEs vary widely,
so the effect varies dramatically person by person. An interesting
future direction would be trying to predict what features and traits
make a user more likely to benefit from empathy, and finetune an
LLM model to dynamically adapt its empathy levels accordingly.
However, we could not construct this personalized empathy model
because our dataset did not contain user personality information.
Additional user-level metadata such as session history, interaction
patterns, or, more importantly, demographic and sociological infor-
mation would substantially strengthen this research. Such features
would enable more comprehensive confounder control, improving
the precision and causal validity of the estimates. Another con-
founder we identified but did not control for is the possibility that
the effect accumulates over turns: the treatment effect could be
stronger at specific points in the conversation. We suspect that
later turns may show either amplified or diminished effects (push-
ing estimates toward the CATE distribution’s tails), depending on
how the interaction is unfolding and whether the conversation is
moving in the direction the user wants. Addressing this would shift
the problem from a static to a dynamic causal inference setting.

To strengthen the robustness of our findings, additional causal
estimators could be applied to the dataset. Methods such as the
R-Learner, which estimates treatment effects on residualized out-
comes, and the X-Learner, which is particularly effective when
treatment groups are unbalanced (as it is in our case), would of-
fer complementary perspectives on the HTE. Similarly, a targeted
maximum likelihood estimate (TMLE) would provide complemen-
tary identification strategies and help assess the sensitivity of our
conclusions to the choice of estimator. Applying these would give
a more methodologically complete analysis and help verify that
our conclusions do not depend on the choice of estimator, further
validating the stability of the observed treatment effect.

Our project is heavily dependent on LLM-generated empathy
and attachment scores for each conversation sample. We would
prefer using human-annotated values as ground truth, but this
wasn’t possible due to time restrictions as annotating almost 9000
turns would be too costly. Human-generated ground truths for
the empathy and attachment scores would have strengthened the
external validity of our project, making it more reliable and suited
to the real world.

8 LLM statement
The usage of LLMs such as ChatGPT and Gemini was limited ex-
clusively to correcting the syntax of our writing and improving the
clarity of the report.
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